If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18(18+14)=8x^2
We move all terms to the left:
18(18+14)-(8x^2)=0
We add all the numbers together, and all the variables
-8x^2+1832=0
a = -8; b = 0; c = +1832;
Δ = b2-4ac
Δ = 02-4·(-8)·1832
Δ = 58624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{58624}=\sqrt{256*229}=\sqrt{256}*\sqrt{229}=16\sqrt{229}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{229}}{2*-8}=\frac{0-16\sqrt{229}}{-16} =-\frac{16\sqrt{229}}{-16} =-\frac{\sqrt{229}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{229}}{2*-8}=\frac{0+16\sqrt{229}}{-16} =\frac{16\sqrt{229}}{-16} =\frac{\sqrt{229}}{-1} $
| d-892=1299 | | x+11÷8=-3 | | 6x+9x=3x | | m5=-15 | | 5p+1=4p+2 | | .4t=16 | | –12=24+6y | | b/6b–8=3b+19 | | 15-2x=-25 | | (-9+7x)^2=9 | | 1-4x=1x/2 | | 182=-w+63 | | t-896=-2652 | | 5g=5g45 | | 0=X^2+14x-527 | | 1/4-x/1=x/8 | | c²-10c+25=0 | | -3x+4(3x)=-18 | | 49-y=288 | | 5x+3+72=180 | | 198=-x+144 | | -6x-6(3x-9)=6 | | 4x+2=-7x+4 | | x+3x-1=5x-5 | | 5.)-4+4x=-40 | | (3x/5)=x-8 | | -3t=5t+12 | | 21.8+-71.8=x | | 4n=–5+9n | | 7x-352=-4x+110 | | (4+4)=(9+2x+5) | | 45=r-18 |